1.请教高手 DEA模型的运用
dea 数据包络分析(DEA)简介 在人们的生产活动和社会活动中常常会遇到这样的问题:经过一段时间之后,需要对具有相同类型的部门或单位(称为决策单元)进行评价,其评价的依据是决策单元的“输入”数据和“输出”数据,输入数据是指决策单元在某种活动中需要消耗的某些量,例如投入的资金总额,投入的总劳动力数,占地面积等等;输出数据是决策单元经过一定的输入之后,产生的表明该活动成效的某些信息量,例如不同类型的产品数量,产品的质量,经济效益等等.再具体些说,譬如在评价某城市的高等学校时,输入可以是学校的全年的资金,教职员工的总人数,教学用房的总面积,各类职称的教师人数等等;输出可以是培养博士研究生的人数,硕士研究生的人数,大学生的人数,学生的质量(德,智,体),教师的教学工作量,学校的科研成果(数量与质量)等等.根据输入数据和输出数据来评价决策单元的优劣,即所谓评价部门(或单位)间的相对有效性. 1978年由著名的运筹学家A.Charnes,W.W.Cooper和 E.Rhodes首先提出了一个被称为数据包络分析(Data Envelopment Analysis,简称DEA)的方法,去评价部门间的相对有效性(因此被称为DEA有效).他们的第一个模型被命名为CCR模型.从生产函数角度看,这一模型是用来研究具有多个输入、特别是具有多个输出的“生产部门”同时为“规模有效”与“技术有效”的十分理想且卓有成效的方法.1984年 R.D.Banker,A.Charnes和W.W.Cooper给出了一个被称为BCC的模型.1985年Charnes,Cooper和 B.Golany, L.Seiford, J.Stutz给出了另一个模型(称为CCGSS模型),这两个模型是用来研究生产部门的间的“技术有效”性的.1986年Charnes,Cooper 和魏权龄为了进一步地估计“有效生产前沿面”,利用Charnes, Cooper和K.Kortanek于1962年首先提出的半无限规划理论,研究了具有无穷多个决策单元的情况,给出了一个新的数据包络模型——CCW模型.1987年Charnes, Cooper,魏权龄和黄志民又得到了称为锥比率的数据包络模型——CCWH模型.这一模型可以用来处理具有过多的输入及输出的情况,而且锥的选取可以体现决策者的“偏好”.灵活的应用这一模型,可以将CCR模型中确定出的DEA有效决策单元进行分类或排队等等.这些模型以及新的模型正在被不断地进行完善和进一步发展. 上述的一些模型都可以看作是处理具有多个输入(输出越小越好)和多个输出(输入越大越好)的多目标决策问题的方法.可以证明,DEA有效性与相应的多目标规划问题的pareto有效解(或非支配解)是等价的.数据包络分析(即DEA)可以看作是一种统计分析的新方法.它是根据一组关于输入-输出的观察值来估计有效生产前沿面的.在经济学和计量经济学中,估计有效生产前沿面,通常使用统计回归以及其它的一些统计方法,这些方法估计出的生产函数并没有表现出实际的前沿面,得出得函数实际上是非有效的.因为这种估计是将有效决策单元与非有效决策单元混为一谈而得出来的.在有效性的评价方面,除了DEA方法以外,还有其它的一些方法,但是那些方法几乎仅限于单输出的情况.相比之下,DEA方法处理多输入,特别是多输出的问题的能力是具有绝对优势的.并且,DEA方法不仅可以用线性规划来判断决策单元对应的点是否位于有效生产前沿面上,同时又可获得许多有用的管理信息.因此,它比其它的一些方法(包括采用统计的方法)优越,用处也更广泛. 数据包络分析是运筹学的一个新的研究领域.Charnes和Cooper等人的第一个应用DEA的十分成功的案例,是在评价为弱智儿童开设公立学校项目的同时,描绘出可以反映大规模社会实验结果的研究方法.在评估中,输出包括“自尊”等无形的指标;输入包括父母的照料和父母的文化程度等,无论哪种指标都无法与市场价格相比较,也难以轻易定出适当的权重(权系数),这也是DEA的优点之一. DEA的优点吸引了众多的应用者,应用范围已扩展到美国军用飞机的飞行、基地维修与保养,以及陆军征兵、城市、银行等方面.目前,这一方法应用的领域正在不断地扩大.它也可以用来研究多种方案之间的相对有效性(例如投资项目评价);研究在做决策之前去预测一旦做出决策后它的相对效果如何(例如建立新厂后,新厂相对于已有的一些工厂是否为有效).DEA模型甚至可以用来进行政策评价. 最引人注目的研究是把DEA与其它评价方法进行比较.例如将DEA应用于北卡罗来纳州各医院的有效性评价.已有的按计量经济学方式给出的回归生产函数认为,此例中不存在规模收益.DEA的研究发现,尽管使用同样的数据,回归生产函数不能象DEA那样正确测定规模收益.其关键在于(a)DEA和回归方法虽然都使用给定的同样数据,但使用方式不一样;(b)DEA致力于每个单个医院的优化,而不是对整个集合的统计回归优化.在其它的研究中,例如在评价医院经营有效性时,将DEA与马萨诸塞州有效性评定委员会使用的比例方法进行了比较,当使用模拟方法对DEA进行检验后认为,尽管由回归函数产生的数据有利于回归方法的使用,但是DEA方法显得更有效. DEA。
2.基于r语言的dea分析的分析结果怎么看
方法/步骤
1.录入原始数据。如图所示,原始数据一般采用excel表格来录入,第一列为决策单元序列,比如公司、行业等;后续各列依次是产出和投入变量,切忌产出变量一定要在投入变量前面。
2.分析效率情况。如图所示,将原始数据的格式进行统一调整之后,导入deap分析软件中,设定好相应的程序和命令后,即可运行出数据分析的结果。其中firm是公司序号,crste是技术效率,vrste是纯技术效率,scale是规模效率,最后一列是规模报酬的状态,irs是规模报酬递增,drs是规模报酬递减,-是规模报酬不变。
3
2.分析冗余情况。如图所示,DEA数据分析结果会分别给出投入、产出的冗余量,其中产出冗余数值是表示产出少了多少,而投入冗余则是表示投入多了多少。
4
4.分析参考单元。如图所示,peers表示的是可以作为效率改进参照的公司序号。由结果可见,5和13的决策单元的效率值为一,这样其他公司以此作为参照,对投入产出量进行调整,便可实现DEA有效。
3.dea分析
MACD是Moving Average Convergence Divergence的缩写,中文翻译为平滑异同移动平均线,主要是利用长短期的二条平滑平均线,计算两者之间的差离值,作为研判行情买卖之依据。
算法: DIFF线收盘价短期、长期指数平滑移动平均线间的差 DEA线 DIFF线的M日指数平滑移动平均线 MACD线DIFF线与DEA线的差,彩色柱状线 参数:SHORT(短期)、LONG(长期)、M 天数,一般为12、26、9 用法: 1.DIFF、DEA均为正,DIFF向上突破DEA,买入信号。 2.DIFF、DEA均为负,DIFF向下跌破DEA,卖出信号。
3.DEA线与K线发生背离,行情反转信号。 4.分析MACD柱状线,由正变负,卖出信号;由负变正,买入信号。
4.如何使用deap软件进行DEA效率分析
第一步,建立一个文件夹,必须包括四个文件:Dblank(ins文件);deap;DEAP.000; deap.dta,其中前三个文件名是默认的,后一个文件名可以修改,例如520.dta。
此外,文件夹中还可放入一个excel文件,用于录入原始数据,可以命名为520.xls。第二步,录入原始数据。
打开520.xls文件,在520.xls中录入原始数据,其中产出变量放在前面,输入变量放在后面。原始数据录入完毕后,调整好统一格式,如字体大小、文字居中等。
第三步,导入运行数据。打开520.xls文件,将原始数据复制粘贴到520.dta文件中,需要保持导入数据的每一列的“首数字”是对齐的,各列之间需留有空格(具体空格数不要求),文件打开方式选择“记事本”,点击“保存”后关闭。
第四步,修改命令文件。选择“记事本”方式打开Dblank文件,第1行填写数据输入文件名,即520,第2行填写结果输出文件名,可为520,第3行填写样本数量,即10,第4行填写样本时期数,即1,第5行填写产出变量数,即1,第6行填写输入变量数,即1,第7-9行则根据分析目的自行选择填写,相应命令修改完毕后保存为520.ins文件第五步,运行命令文件。
双击打开deap文件,在最后一行光标闪烁处输入:520.ins,敲击回车键即可。第六步,运算结果查询。
在执行第四步后,文件夹中会自动生成一个新的文件520.out,同样选择“记事本”方式打开,即可查询到运算结果。
转载请注明出处365案例网 » DEA方法实际案例分析